Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Metabolites ; 14(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38535311

Astrocytes play fundamental roles in the maintenance of brain homeostasis. The dysfunction of these cells is widely associated with brain disorders, which are often characterized by variations in the astrocyte protein markers GFAP and S100B, in addition to alterations in some of its metabolic functions. To understand the role of astrocytes in neurodegeneration mechanisms, we induced some of these metabolic alterations, such as energy metabolism, using methylglyoxal (MG) or fluorocitrate (FC); and neuroinflammation, using lipopolysaccharide (LPS) and streptozotocin (STZ), which is used for inducing Alzheimer's disease (AD) in animal models. We showed that MG, LPS, STZ and FC similarly caused astrocyte dysfunction by increasing GFAP and reducing S100B secretion. In the context of AD, STZ caused an amyloid metabolism impairment verified by increases in Aß1-40 peptide content and decreases in the amyloid degradation enzymes, IDE and NEP. Our data contribute to the understanding of the role of astrocytes in brain injury mechanisms and suggest that STZ is suitable for use in vitro models for studying the role of astrocytes in AD.

2.
Nutr Neurosci ; : 1-13, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38386276

Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.

3.
Neurotoxicology ; 99: 322-331, 2023 Dec.
Article En | MEDLINE | ID: mdl-38006911

Dementia is the most prevalent neurodegenerative disorder, characterized by progressive loss of memory and cognitive function. Inflammation is a major aspect in the progression of brain disorders, and inflammatory events have been associated with accelerated deterioration of cognitive function. In the present work, we investigated the impact of low-grade repeated inflammation stimuli induced by lipopolysaccharide (LPS) in hippocampal function and spatial memory. Adult male Wistar rats received a weekly injection of LPS (500 ug/kg) for sixteen weeks, eliciting systemic inflammation. Animals submitted to LPS presented impaired spatial memory and neuroinflammation. While neuronal synaptic markers such as synaptophysin and PSD-95 were unaltered, critical aspects of astrocyte homeostatic functions, such as glutamate uptake and glutathione content, were reduced. Also, glucose uptake and astrocyte lactate transporters were altered, suggesting a disturbance in the astrocyte-neuron coupling. Our present work demonstrates that long-term repeated systemic inflammation can lead to memory impairment and hippocampal metabolic disorders, especially regarding astrocyte function.


Astrocytes , Lipopolysaccharides , Rats , Animals , Male , Lipopolysaccharides/toxicity , Rats, Wistar , Memory Disorders/metabolism , Inflammation/chemically induced , Homeostasis , Hippocampus
4.
Mol Neurobiol ; 2023 Nov 18.
Article En | MEDLINE | ID: mdl-37980327

Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1ß synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG. Proposed neuroprotection role of metformin in acute hippocampal slices against impairment in glutamatergic system induced in a model of methylglyoxal glycotoxicity. Metformin reversed methylglyoxal (MG)-induced neuroinflammation by reducing pro-inflammatory IL-1ß synthesis and secretion and RAGE protein expression. Metformin did not alter the effect of MG on S100B secretion (1). Both MG and metformin also influenced astrocyte function in hippocampal slices. Metformin did not reverse the elevation in GLO1 activity induced by glycotoxicity; however, it abrogated the high GSH level and the expression of the co-factor of GLO1 (2). Both treatments per se changed bioenergetic metabolism and increased glucose uptake, extracellular lactate content, and pyruvate kinase (PK) activity. The increment in glucose uptake and lactate levels ceased during the co-incubation of MG with metformin. Metformin reversed the elevation of hexokinase activity by MG (3). We suggest a new role of metformin in the glutamate system, whereby it protects the hippocampus against the derangements of the glutamatergic system induced by MG, possibly by phosphorylation via PKC ζ (4). The neuroprotective action of metformin may be mediated by the phosphorylation of specific amino acid residues (Lysine) of the glutamate transporters (GLAST and GLT-1), since metformin activated the PKC ζ signaling and promoted cascades of phosphorylation in p38 MAPK and Akt proteins. The transporter protein phosphorylation prevented the Lys-glycation and the impairment of glutamate uptake induced by MG (5).

5.
Brain Res ; 1818: 148519, 2023 11 01.
Article En | MEDLINE | ID: mdl-37562565

Curcumin is a pleiotropic molecule with well-known anti-inflammatory effects. This molecule has attracted attention due to its capacity to pass the blood-brain-barrier and modulate central nervous system (CNS) cells, such as astrocytes. Astrocytes are the most numerous CNS cells, and play a pivotal role in inflammatory damage, a common feature in neurodegenerative diseases such as Alzheimer's Disease. Although the actions of curcumin have been studied extensively in peripheral cells, few studies have investigated the effect of curcumin on astrocytes under basal and inflammatory conditions. The aim of this study was to characterize the effect of curcumin on astrocytic function (glutamatergic metabolism, GFAP and S100B), and investigate a possible synergic effect with another molecule, piperine. For this purpose, we used primary cultured astrocytes; our results showed that curcumin increases GSH and GFAP content, but decreases S100B secretion under basal conditions. Under inflammatory conditions, provoked by lipopolysaccharide (LPS), curcumin and piperine reversed the LPS-induced secretion of TNF-α, and piperine reverted the LPS-induced upregulation of GFAP content. Interestingly, curcumin decreases S100B secretion even more than LPS. These results highlight important context-dependent effects of curcumin and piperine on astrocytes. Although we did not observe synergic effects of co-treatment with curcumin and piperine, their effects were complementary, as piperine modulated GFAP content under inflammatory conditions, and curcumin modulated S100B secretion. Both curcumin and piperine had important anti-inflammatory actions in astrocytes. We herein provide new insights into the actions of curcumin in the CNS that may aid in the search for new molecular targets and possible treatments for neurological diseases.


Astrocytes , Curcumin , Astrocytes/metabolism , Curcumin/pharmacology , Curcumin/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology
6.
Article En | MEDLINE | ID: mdl-36565981

Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury. We hypothesize that arundic acid (ONO-2506), which is known as an inhibitor of S100B synthesis and secretion, protects the hippocampal tissue from neuroinflammation and astrocyte dysfunction after status epileptics (SE) induction by Li-pilocarpine in young rats. Herein, we investigated the effects of arundic acid treatment, at time points of 6 or 24 h after the induction of SE by Li-pilocarpine, in young rats. In SE animals, arundic acid was able to prevent the damage induced by Li-pilocarpine in the hippocampus, decreasing neuroinflammatory signaling (reducing IL-1ß, COX2, TLR4 and RAGE contents), astrogliosis (decreasing GFAP and S100B) and astrocytic dysfunction (recovering levels of GSH, glutamine synthetase and connexin-43). Furthermore, arundic acid improved glucose metabolism and reduced the glutamate excitotoxicity found in epilepsy. Our data reinforce the role of astrocytes in epileptogenesis development and the neuroprotective role of arundic acid, which modulates astrocyte function and neuroinflammation in SE animals.


Epilepsy , Status Epilepticus , Rats , Animals , Astrocytes/metabolism , Pilocarpine/toxicity , Neuroinflammatory Diseases , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Hippocampus/metabolism , Glial Fibrillary Acidic Protein/metabolism
7.
J Neuroinflammation ; 19(1): 255, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36221097

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1ß and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.


Lipopolysaccharides , Metformin , Animals , Cytokines/metabolism , Glucose/metabolism , Glutamates/metabolism , Hippocampus/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lactates/adverse effects , Lactates/metabolism , Lipopolysaccharides/toxicity , Metformin/pharmacology , Microglia/metabolism , Minocycline/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Oxamic Acid/adverse effects , Oxamic Acid/metabolism , Protein Kinases/metabolism , Rats
8.
Neurosci Lett ; 751: 135776, 2021 04 23.
Article En | MEDLINE | ID: mdl-33727126

Astrocytes respond to injury by modifying the expression profile of several proteins, including the S100 calcium-binding protein B (S100B), assumed to be a marker as well as a mediator of brain injury. AA is an inhibitor of S100B synthesis and plays a protective role in different models of brain injury, as decreases in S100B expression cause decreases in extracellular S100B. However, S100B mRNA expression, S100B protein content and S100B secretion do not always occur in association; as such, we herein investigated the effect of AA on S100B secretion, using different approaches with three stimulating conditions for S100B secretion, namely, low potassium medium, TNF-α (in hippocampal slices) and LPS exposure (in astrocyte cultures). Our data indicate that AA directly affects S100B secretion, indicating that the extracellular levels of this astroglial protein may be mediating the action of this compound. More importantly, AA had no effect on basal S100B secretion, but inhibited stimulated S100B secretion (stimulated either by the proinflammatory molecules, LPS or TNF-α, or by low potassium medium). Data from hippocampal slices that were directly exposed to AA, or from animals that received the acid by intracerebroventricular infusion, contribute to understanding its neuroprotective effect.


Anti-Inflammatory Agents/pharmacology , Caprylates/pharmacology , Hippocampus/drug effects , Neuroprotective Agents/pharmacology , S100 Calcium Binding Protein beta Subunit/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , S100 Calcium Binding Protein beta Subunit/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Neurochem Int ; 131: 104538, 2019 12.
Article En | MEDLINE | ID: mdl-31430518

The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less. However, there are a few studies evaluating the different features of these cells which may put into question the validity of using them as astrocyte models. The aim of this study was to compare primary cultures (PC) with two cell lines - immortalized astrocytes and C6 cells, in terms of protein characterization, morphology and metabolic functional activity. Our results showed, under the same culture condition, that immortalized astrocytes and C6 are positive for differentiated astrocytic markers (eg. GFAP, S100B, AQP4 and ALDH1L1), although expressing them in less quantities then primary astrocyte cultures. Glutamate metabolism and cell communication are reduced in proliferative cells. However, glucose uptake is elevated in C6 lineage cells in comparison with primary astrocytes, probably due to their tumorigenic origin and high proliferation rate. Immortalized astrocytes presented a lower growth rate than C6 cells, and a similar basal morphology as primary astrocytes. However, they did not prove to be as good reproductive models of some of the classic astrocytic functions, such as S100B secretion and GFAP content, especially while under stimulation. In contrast, C6 cells presented similar results in comparison to primary astrocytes in response to stimuli. Here we provide a functional comparison of three astrocytic models, in an attempt to select the most suitable model for the study of astrocytes, optimizing the research in this area of knowledge.


Astrocytes/metabolism , Brain Neoplasms/metabolism , Glioma/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain Neoplasms/pathology , Cell Communication , Cell Line , Cell Proliferation , Glial Fibrillary Acidic Protein/metabolism , Glioma/pathology , Glucose/metabolism , Glutamic Acid/metabolism , Glutathione/metabolism , Immunohistochemistry , Male , Primary Cell Culture , Rats , Rats, Wistar , S100 Calcium Binding Protein beta Subunit/metabolism
...